Metamath Proof Explorer


Theorem mpjao3danOLD

Description: Obsolete version of mpjao3dan as of 17-Apr-2024. (Contributed by Thierry Arnoux, 13-Apr-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mpjao3dan.1 φψχ
mpjao3dan.2 φθχ
mpjao3dan.3 φτχ
mpjao3dan.4 φψθτ
Assertion mpjao3danOLD φχ

Proof

Step Hyp Ref Expression
1 mpjao3dan.1 φψχ
2 mpjao3dan.2 φθχ
3 mpjao3dan.3 φτχ
4 mpjao3dan.4 φψθτ
5 1 2 jaodan φψθχ
6 df-3or ψθτψθτ
7 4 6 sylib φψθτ
8 5 3 7 mpjaodan φχ