Metamath Proof Explorer


Theorem imdistanda

Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis imdistanda.1 φψχθ
Assertion imdistanda φψχψθ

Proof

Step Hyp Ref Expression
1 imdistanda.1 φψχθ
2 1 ex φψχθ
3 2 imdistand φψχψθ