Metamath Proof Explorer


Theorem 3adant2l

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006) (Proof shortened by Wolf Lammen, 25-Jun-2022)

Ref Expression
Hypothesis ad4ant3.1 φψχθ
Assertion 3adant2l φτψχθ

Proof

Step Hyp Ref Expression
1 ad4ant3.1 φψχθ
2 simpr τψψ
3 2 1 syl3an2 φτψχθ