Metamath Proof Explorer


Theorem simprld

Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simprld.1 φψχθ
Assertion simprld φχ

Proof

Step Hyp Ref Expression
1 simprld.1 φψχθ
2 1 simprd φχθ
3 2 simpld φχ