Metamath Proof Explorer


Theorem bitrdi

Description: A syllogism inference from two biconditionals. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses bitrdi.1 φ ψ χ
bitrdi.2 χ θ
Assertion bitrdi φ ψ θ

Proof

Step Hyp Ref Expression
1 bitrdi.1 φ ψ χ
2 bitrdi.2 χ θ
3 2 a1i φ χ θ
4 1 3 bitrd φ ψ θ