Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical equivalence
bitrdi
Next ⟩
bitr2di
Metamath Proof Explorer
Ascii
Unicode
Theorem
bitrdi
Description:
A syllogism inference from two biconditionals.
(Contributed by
NM
, 12-Mar-1993)
Ref
Expression
Hypotheses
bitrdi.1
⊢
φ
→
ψ
↔
χ
bitrdi.2
⊢
χ
↔
θ
Assertion
bitrdi
⊢
φ
→
ψ
↔
θ
Proof
Step
Hyp
Ref
Expression
1
bitrdi.1
⊢
φ
→
ψ
↔
χ
2
bitrdi.2
⊢
χ
↔
θ
3
2
a1i
⊢
φ
→
χ
↔
θ
4
1
3
bitrd
⊢
φ
→
ψ
↔
θ