Metamath Proof Explorer


Theorem syl2an23an

Description: Deduction related to syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016) (Proof shortened by Wolf Lammen, 28-Jun-2022)

Ref Expression
Hypotheses syl2an23an.1 φψ
syl2an23an.2 φχ
syl2an23an.3 θφτ
syl2an23an.4 ψχτη
Assertion syl2an23an θφη

Proof

Step Hyp Ref Expression
1 syl2an23an.1 φψ
2 syl2an23an.2 φχ
3 syl2an23an.3 θφτ
4 syl2an23an.4 ψχτη
5 1 2 3 4 syl2an3an φθφη
6 5 anabss7 θφη