Description: Deduction related to syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016) (Proof shortened by Wolf Lammen, 28-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl2an23an.1 | |- ( ph -> ps )  | 
					|
| syl2an23an.2 | |- ( ph -> ch )  | 
					||
| syl2an23an.3 | |- ( ( th /\ ph ) -> ta )  | 
					||
| syl2an23an.4 | |- ( ( ps /\ ch /\ ta ) -> et )  | 
					||
| Assertion | syl2an23an | |- ( ( th /\ ph ) -> et )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl2an23an.1 | |- ( ph -> ps )  | 
						|
| 2 | syl2an23an.2 | |- ( ph -> ch )  | 
						|
| 3 | syl2an23an.3 | |- ( ( th /\ ph ) -> ta )  | 
						|
| 4 | syl2an23an.4 | |- ( ( ps /\ ch /\ ta ) -> et )  | 
						|
| 5 | 1 2 3 4 | syl2an3an | |- ( ( ph /\ ( th /\ ph ) ) -> et )  | 
						
| 6 | 5 | anabss7 | |- ( ( th /\ ph ) -> et )  |