Metamath Proof Explorer


Theorem anabss7

Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996) (Proof shortened by Wolf Lammen, 19-Nov-2013)

Ref Expression
Hypothesis anabss7.1
|- ( ( ps /\ ( ph /\ ps ) ) -> ch )
Assertion anabss7
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 anabss7.1
 |-  ( ( ps /\ ( ph /\ ps ) ) -> ch )
2 1 anassrs
 |-  ( ( ( ps /\ ph ) /\ ps ) -> ch )
3 2 anabss4
 |-  ( ( ph /\ ps ) -> ch )