Metamath Proof Explorer


Theorem simplrd

Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simplrd.1 φψχθ
Assertion simplrd φχ

Proof

Step Hyp Ref Expression
1 simplrd.1 φψχθ
2 1 simpld φψχ
3 2 simprd φχ