Metamath Proof Explorer


Theorem syl321anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012)

Ref Expression
Hypotheses syl3anc.1 φ ψ
syl3anc.2 φ χ
syl3anc.3 φ θ
syl3Xanc.4 φ τ
syl23anc.5 φ η
syl33anc.6 φ ζ
syl321anc.7 ψ χ θ τ η ζ σ
Assertion syl321anc φ σ

Proof

Step Hyp Ref Expression
1 syl3anc.1 φ ψ
2 syl3anc.2 φ χ
3 syl3anc.3 φ θ
4 syl3Xanc.4 φ τ
5 syl23anc.5 φ η
6 syl33anc.6 φ ζ
7 syl321anc.7 ψ χ θ τ η ζ σ
8 4 5 jca φ τ η
9 1 2 3 8 6 7 syl311anc φ σ