Metamath Proof Explorer


Theorem simpli

Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994)

Ref Expression
Hypothesis simpli.1 φψ
Assertion simpli φ

Proof

Step Hyp Ref Expression
1 simpli.1 φψ
2 simpl φψφ
3 1 2 ax-mp φ