Metamath Proof Explorer


Theorem simpli

Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994)

Ref Expression
Hypothesis simpli.1
|- ( ph /\ ps )
Assertion simpli
|- ph

Proof

Step Hyp Ref Expression
1 simpli.1
 |-  ( ph /\ ps )
2 simpl
 |-  ( ( ph /\ ps ) -> ph )
3 1 2 ax-mp
 |-  ph