Metamath Proof Explorer


Theorem 3bitr4d

Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995)

Ref Expression
Hypotheses 3bitr4d.1 φψχ
3bitr4d.2 φθψ
3bitr4d.3 φτχ
Assertion 3bitr4d φθτ

Proof

Step Hyp Ref Expression
1 3bitr4d.1 φψχ
2 3bitr4d.2 φθψ
3 3bitr4d.3 φτχ
4 1 3 bitr4d φψτ
5 2 4 bitrd φθτ