Metamath Proof Explorer


Theorem 3bitr4d

Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995)

Ref Expression
Hypotheses 3bitr4d.1 ( 𝜑 → ( 𝜓𝜒 ) )
3bitr4d.2 ( 𝜑 → ( 𝜃𝜓 ) )
3bitr4d.3 ( 𝜑 → ( 𝜏𝜒 ) )
Assertion 3bitr4d ( 𝜑 → ( 𝜃𝜏 ) )

Proof

Step Hyp Ref Expression
1 3bitr4d.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 3bitr4d.2 ( 𝜑 → ( 𝜃𝜓 ) )
3 3bitr4d.3 ( 𝜑 → ( 𝜏𝜒 ) )
4 1 3 bitr4d ( 𝜑 → ( 𝜓𝜏 ) )
5 2 4 bitrd ( 𝜑 → ( 𝜃𝜏 ) )