Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical equivalence
3bitr4d
Metamath Proof Explorer
Description: Deduction from transitivity of biconditional. Useful for converting
conditional definitions in a formula. (Contributed by NM , 18-Oct-1995)
Ref
Expression
Hypotheses
3bitr4d.1
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) )
3bitr4d.2
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜓 ) )
3bitr4d.3
⊢ ( 𝜑 → ( 𝜏 ↔ 𝜒 ) )
Assertion
3bitr4d
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) )
Proof
Step
Hyp
Ref
Expression
1
3bitr4d.1
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) )
2
3bitr4d.2
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜓 ) )
3
3bitr4d.3
⊢ ( 𝜑 → ( 𝜏 ↔ 𝜒 ) )
4
1 3
bitr4d
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜏 ) )
5
2 4
bitrd
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) )