Metamath Proof Explorer
		
		
		
		Description:  Deduction from transitivity of biconditional.  (Contributed by NM, 4-Aug-2006)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 3bitr4d.1 | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
					
						|  |  | 3bitr4d.2 | ⊢ ( 𝜑  →  ( 𝜃  ↔  𝜓 ) ) | 
					
						|  |  | 3bitr4d.3 | ⊢ ( 𝜑  →  ( 𝜏  ↔  𝜒 ) ) | 
				
					|  | Assertion | 3bitr4rd | ⊢  ( 𝜑  →  ( 𝜏  ↔  𝜃 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3bitr4d.1 | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | 3bitr4d.2 | ⊢ ( 𝜑  →  ( 𝜃  ↔  𝜓 ) ) | 
						
							| 3 |  | 3bitr4d.3 | ⊢ ( 𝜑  →  ( 𝜏  ↔  𝜒 ) ) | 
						
							| 4 | 3 1 | bitr4d | ⊢ ( 𝜑  →  ( 𝜏  ↔  𝜓 ) ) | 
						
							| 5 | 4 2 | bitr4d | ⊢ ( 𝜑  →  ( 𝜏  ↔  𝜃 ) ) |