Metamath Proof Explorer


Theorem imim21b

Description: Simplify an implication between two implications when the antecedent of the first is a consequence of the antecedent of the second. The reverse form is useful in producing the successor step in induction proofs. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Wolf Lammen, 14-Sep-2013)

Ref Expression
Assertion imim21b ψ φ φ χ ψ θ ψ χ θ

Proof

Step Hyp Ref Expression
1 bi2.04 φ χ ψ θ ψ φ χ θ
2 pm5.5 φ φ χ χ
3 2 imbi1d φ φ χ θ χ θ
4 3 imim2i ψ φ ψ φ χ θ χ θ
5 4 pm5.74d ψ φ ψ φ χ θ ψ χ θ
6 1 5 bitrid ψ φ φ χ ψ θ ψ χ θ