Metamath Proof Explorer


Theorem syl8ib

Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypotheses syl8ib.1 φψχθ
syl8ib.2 θτ
Assertion syl8ib φψχτ

Proof

Step Hyp Ref Expression
1 syl8ib.1 φψχθ
2 syl8ib.2 θτ
3 2 biimpi θτ
4 1 3 syl8 φψχτ