Metamath Proof Explorer


Theorem 3ad2antr1

Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007)

Ref Expression
Hypothesis 3ad2antl.1 φχθ
Assertion 3ad2antr1 φχψτθ

Proof

Step Hyp Ref Expression
1 3ad2antl.1 φχθ
2 1 adantrr φχψθ
3 2 3adantr3 φχψτθ