Metamath Proof Explorer
		
		
		
		Description:  Deduction adding conjuncts to antecedent.  (Contributed by NM, 25-Dec-2007)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypothesis | 
						3ad2antl.1 | 
						⊢ ( ( 𝜑  ∧  𝜒 )  →  𝜃 )  | 
					
				
					 | 
					Assertion | 
					3ad2antr1 | 
					⊢  ( ( 𝜑  ∧  ( 𝜒  ∧  𝜓  ∧  𝜏 ) )  →  𝜃 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3ad2antl.1 | 
							⊢ ( ( 𝜑  ∧  𝜒 )  →  𝜃 )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantrr | 
							⊢ ( ( 𝜑  ∧  ( 𝜒  ∧  𝜓 ) )  →  𝜃 )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adantr3 | 
							⊢ ( ( 𝜑  ∧  ( 𝜒  ∧  𝜓  ∧  𝜏 ) )  →  𝜃 )  |