Metamath Proof Explorer


Theorem 3adantr3

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005)

Ref Expression
Hypothesis 3adantr.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
Assertion 3adantr3 ( ( 𝜑 ∧ ( 𝜓𝜒𝜏 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 3adantr.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
2 3simpa ( ( 𝜓𝜒𝜏 ) → ( 𝜓𝜒 ) )
3 2 1 sylan2 ( ( 𝜑 ∧ ( 𝜓𝜒𝜏 ) ) → 𝜃 )