Metamath Proof Explorer


Theorem 3imtr4g

Description: More general version of 3imtr4i . Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996) (Proof shortened by Wolf Lammen, 20-Dec-2013)

Ref Expression
Hypotheses 3imtr4g.1 φ ψ χ
3imtr4g.2 θ ψ
3imtr4g.3 τ χ
Assertion 3imtr4g φ θ τ

Proof

Step Hyp Ref Expression
1 3imtr4g.1 φ ψ χ
2 3imtr4g.2 θ ψ
3 3imtr4g.3 τ χ
4 2 1 syl5bi φ θ χ
5 4 3 syl6ibr φ θ τ