Metamath Proof Explorer


Theorem 3imtr4g

Description: More general version of 3imtr4i . Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996) (Proof shortened by Wolf Lammen, 20-Dec-2013)

Ref Expression
Hypotheses 3imtr4g.1
|- ( ph -> ( ps -> ch ) )
3imtr4g.2
|- ( th <-> ps )
3imtr4g.3
|- ( ta <-> ch )
Assertion 3imtr4g
|- ( ph -> ( th -> ta ) )

Proof

Step Hyp Ref Expression
1 3imtr4g.1
 |-  ( ph -> ( ps -> ch ) )
2 3imtr4g.2
 |-  ( th <-> ps )
3 3imtr4g.3
 |-  ( ta <-> ch )
4 2 1 syl5bi
 |-  ( ph -> ( th -> ch ) )
5 4 3 syl6ibr
 |-  ( ph -> ( th -> ta ) )