Metamath Proof Explorer


Theorem syl6ibr

Description: A mixed syllogism inference from a nested implication and a biconditional. Useful for substituting an embedded consequent with a definition. (Contributed by NM, 10-Jan-1993)

Ref Expression
Hypotheses syl6ibr.1 ( 𝜑 → ( 𝜓𝜒 ) )
syl6ibr.2 ( 𝜃𝜒 )
Assertion syl6ibr ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 syl6ibr.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 syl6ibr.2 ( 𝜃𝜒 )
3 2 biimpri ( 𝜒𝜃 )
4 1 3 syl6 ( 𝜑 → ( 𝜓𝜃 ) )