Metamath Proof Explorer


Theorem syl5ibrcom

Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007)

Ref Expression
Hypotheses syl5ibr.1 ( 𝜑𝜃 )
syl5ibr.2 ( 𝜒 → ( 𝜓𝜃 ) )
Assertion syl5ibrcom ( 𝜑 → ( 𝜒𝜓 ) )

Proof

Step Hyp Ref Expression
1 syl5ibr.1 ( 𝜑𝜃 )
2 syl5ibr.2 ( 𝜒 → ( 𝜓𝜃 ) )
3 1 2 syl5ibr ( 𝜒 → ( 𝜑𝜓 ) )
4 3 com12 ( 𝜑 → ( 𝜒𝜓 ) )