Metamath Proof Explorer


Theorem syl6bir

Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses syl6bir.1 ( 𝜑 → ( 𝜒𝜓 ) )
syl6bir.2 ( 𝜒𝜃 )
Assertion syl6bir ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 syl6bir.1 ( 𝜑 → ( 𝜒𝜓 ) )
2 syl6bir.2 ( 𝜒𝜃 )
3 1 biimprd ( 𝜑 → ( 𝜓𝜒 ) )
4 3 2 syl6 ( 𝜑 → ( 𝜓𝜃 ) )