Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl6bir.1 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜓 ) ) | |
syl6bir.2 | ⊢ ( 𝜒 → 𝜃 ) | ||
Assertion | syl6bir | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bir.1 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜓 ) ) | |
2 | syl6bir.2 | ⊢ ( 𝜒 → 𝜃 ) | |
3 | 1 | biimprd | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
4 | 3 2 | syl6 | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |