Metamath Proof Explorer


Theorem xchnxbi

Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)

Ref Expression
Hypotheses xchnxbi.1 ( ¬ 𝜑𝜓 )
xchnxbi.2 ( 𝜑𝜒 )
Assertion xchnxbi ( ¬ 𝜒𝜓 )

Proof

Step Hyp Ref Expression
1 xchnxbi.1 ( ¬ 𝜑𝜓 )
2 xchnxbi.2 ( 𝜑𝜒 )
3 2 notbii ( ¬ 𝜑 ↔ ¬ 𝜒 )
4 3 1 bitr3i ( ¬ 𝜒𝜓 )