Metamath Proof Explorer
		
		
		
		Description:  Deduction from transitivity of biconditional.  (Contributed by NM, 4-Aug-2006)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						3bitr2d.1 | 
						⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) )  | 
					
					
						 | 
						 | 
						3bitr2d.2 | 
						⊢ ( 𝜑  →  ( 𝜃  ↔  𝜒 ) )  | 
					
					
						 | 
						 | 
						3bitr2d.3 | 
						⊢ ( 𝜑  →  ( 𝜃  ↔  𝜏 ) )  | 
					
				
					 | 
					Assertion | 
					3bitr2rd | 
					⊢  ( 𝜑  →  ( 𝜏  ↔  𝜓 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3bitr2d.1 | 
							⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							3bitr2d.2 | 
							⊢ ( 𝜑  →  ( 𝜃  ↔  𝜒 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							3bitr2d.3 | 
							⊢ ( 𝜑  →  ( 𝜃  ↔  𝜏 ) )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							bitr4d | 
							⊢ ( 𝜑  →  ( 𝜓  ↔  𝜃 ) )  | 
						
						
							| 5 | 
							
								4 3
							 | 
							bitr2d | 
							⊢ ( 𝜑  →  ( 𝜏  ↔  𝜓 ) )  |