Description: Implication in terms of implication and biconditional. (Contributed by NM, 31-Mar-1994) (Proof shortened by Wolf Lammen, 24-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ibib | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ( 𝜑 ↔ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) | |
2 | 1 | pm5.74i | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ( 𝜑 ↔ 𝜓 ) ) ) |