Metamath Proof Explorer


Theorem eqtrd

Description: An equality transitivity deduction. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses eqtrd.1 φA=B
eqtrd.2 φB=C
Assertion eqtrd φA=C

Proof

Step Hyp Ref Expression
1 eqtrd.1 φA=B
2 eqtrd.2 φB=C
3 2 eqeq2d φA=BA=C
4 1 3 mpbid φA=C