Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class equality
eqtr4di
Next ⟩
eqtr4id
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqtr4di
Description:
An equality transitivity deduction.
(Contributed by
NM
, 21-Jun-1993)
Ref
Expression
Hypotheses
eqtr4di.1
⊢
φ
→
A
=
B
eqtr4di.2
⊢
C
=
B
Assertion
eqtr4di
⊢
φ
→
A
=
C
Proof
Step
Hyp
Ref
Expression
1
eqtr4di.1
⊢
φ
→
A
=
B
2
eqtr4di.2
⊢
C
=
B
3
2
eqcomi
⊢
B
=
C
4
1
3
eqtrdi
⊢
φ
→
A
=
C