Metamath Proof Explorer


Theorem fnbrfvb

Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fnbrfvb FFnABAFB=CBFC

Proof

Step Hyp Ref Expression
1 eqid FB=FB
2 fvex FBV
3 eqeq2 x=FBFB=xFB=FB
4 breq2 x=FBBFxBFFB
5 3 4 bibi12d x=FBFB=xBFxFB=FBBFFB
6 5 imbi2d x=FBFFnABAFB=xBFxFFnABAFB=FBBFFB
7 fneu FFnABA∃!xBFx
8 tz6.12c ∃!xBFxFB=xBFx
9 7 8 syl FFnABAFB=xBFx
10 2 6 9 vtocl FFnABAFB=FBBFFB
11 1 10 mpbii FFnABABFFB
12 breq2 FB=CBFFBBFC
13 11 12 syl5ibcom FFnABAFB=CBFC
14 fnfun FFnAFunF
15 funbrfv FunFBFCFB=C
16 14 15 syl FFnABFCFB=C
17 16 adantr FFnABABFCFB=C
18 13 17 impbid FFnABAFB=CBFC