Metamath Proof Explorer


Theorem fneu

Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fneu FFnABA∃!yBFy

Proof

Step Hyp Ref Expression
1 funmo FunF*yBFy
2 1 adantr FunFBdomF*yBFy
3 eldmg BdomFBdomFyBFy
4 3 ibi BdomFyBFy
5 4 adantl FunFBdomFyBFy
6 exmoeub yBFy*yBFy∃!yBFy
7 5 6 syl FunFBdomF*yBFy∃!yBFy
8 2 7 mpbid FunFBdomF∃!yBFy
9 8 funfni FFnABA∃!yBFy