Metamath Proof Explorer


Theorem fneu2

Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995)

Ref Expression
Assertion fneu2 FFnABA∃!yByF

Proof

Step Hyp Ref Expression
1 fneu FFnABA∃!yBFy
2 df-br BFyByF
3 2 eubii ∃!yBFy∃!yByF
4 1 3 sylib FFnABA∃!yByF