Metamath Proof Explorer


Theorem eubii

Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994) (Revised by Mario Carneiro, 6-Oct-2016) Avoid ax-5 . (Revised by Wolf Lammen, 27-Sep-2023)

Ref Expression
Hypothesis eubii.1 φ ψ
Assertion eubii ∃! x φ ∃! x ψ

Proof

Step Hyp Ref Expression
1 eubii.1 φ ψ
2 1 exbii x φ x ψ
3 1 mobii * x φ * x ψ
4 2 3 anbi12i x φ * x φ x ψ * x ψ
5 df-eu ∃! x φ x φ * x φ
6 df-eu ∃! x ψ x ψ * x ψ
7 4 5 6 3bitr4i ∃! x φ ∃! x ψ