Metamath Proof Explorer


Theorem eubii

Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994) (Revised by Mario Carneiro, 6-Oct-2016)

Ref Expression
Hypothesis eubii.1 ( 𝜑𝜓 )
Assertion eubii ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 eubii.1 ( 𝜑𝜓 )
2 eubi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 𝜓 ) )
3 2 1 mpg ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 𝜓 )