Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( F ` B ) = ( F ` B ) |
2 |
|
fvex |
|- ( F ` B ) e. _V |
3 |
|
eqeq2 |
|- ( x = ( F ` B ) -> ( ( F ` B ) = x <-> ( F ` B ) = ( F ` B ) ) ) |
4 |
|
breq2 |
|- ( x = ( F ` B ) -> ( B F x <-> B F ( F ` B ) ) ) |
5 |
3 4
|
bibi12d |
|- ( x = ( F ` B ) -> ( ( ( F ` B ) = x <-> B F x ) <-> ( ( F ` B ) = ( F ` B ) <-> B F ( F ` B ) ) ) ) |
6 |
5
|
imbi2d |
|- ( x = ( F ` B ) -> ( ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = x <-> B F x ) ) <-> ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = ( F ` B ) <-> B F ( F ` B ) ) ) ) ) |
7 |
|
fneu |
|- ( ( F Fn A /\ B e. A ) -> E! x B F x ) |
8 |
|
tz6.12c |
|- ( E! x B F x -> ( ( F ` B ) = x <-> B F x ) ) |
9 |
7 8
|
syl |
|- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = x <-> B F x ) ) |
10 |
2 6 9
|
vtocl |
|- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = ( F ` B ) <-> B F ( F ` B ) ) ) |
11 |
1 10
|
mpbii |
|- ( ( F Fn A /\ B e. A ) -> B F ( F ` B ) ) |
12 |
|
breq2 |
|- ( ( F ` B ) = C -> ( B F ( F ` B ) <-> B F C ) ) |
13 |
11 12
|
syl5ibcom |
|- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C -> B F C ) ) |
14 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
15 |
|
funbrfv |
|- ( Fun F -> ( B F C -> ( F ` B ) = C ) ) |
16 |
14 15
|
syl |
|- ( F Fn A -> ( B F C -> ( F ` B ) = C ) ) |
17 |
16
|
adantr |
|- ( ( F Fn A /\ B e. A ) -> ( B F C -> ( F ` B ) = C ) ) |
18 |
13 17
|
impbid |
|- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C <-> B F C ) ) |