Metamath Proof Explorer


Theorem syl5ibcom

Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007)

Ref Expression
Hypotheses syl5ib.1
|- ( ph -> ps )
syl5ib.2
|- ( ch -> ( ps <-> th ) )
Assertion syl5ibcom
|- ( ph -> ( ch -> th ) )

Proof

Step Hyp Ref Expression
1 syl5ib.1
 |-  ( ph -> ps )
2 syl5ib.2
 |-  ( ch -> ( ps <-> th ) )
3 1 2 syl5ib
 |-  ( ch -> ( ph -> th ) )
4 3 com12
 |-  ( ph -> ( ch -> th ) )