Metamath Proof Explorer


Theorem syl5ib

Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993)

Ref Expression
Hypotheses syl5ib.1
|- ( ph -> ps )
syl5ib.2
|- ( ch -> ( ps <-> th ) )
Assertion syl5ib
|- ( ch -> ( ph -> th ) )

Proof

Step Hyp Ref Expression
1 syl5ib.1
 |-  ( ph -> ps )
2 syl5ib.2
 |-  ( ch -> ( ps <-> th ) )
3 2 biimpd
 |-  ( ch -> ( ps -> th ) )
4 1 3 syl5
 |-  ( ch -> ( ph -> th ) )