Metamath Proof Explorer


Theorem syl5ib

Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993)

Ref Expression
Hypotheses syl5ib.1 φ ψ
syl5ib.2 χ ψ θ
Assertion syl5ib χ φ θ

Proof

Step Hyp Ref Expression
1 syl5ib.1 φ ψ
2 syl5ib.2 χ ψ θ
3 2 biimpd χ ψ θ
4 1 3 syl5 χ φ θ