Description: Corollary of Theorem 6.12(1) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by SN, 23-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tz6.12c | |- ( E! y A F y -> ( ( F ` A ) = y <-> A F y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv | |- ( F ` A ) = ( iota y A F y ) |
|
| 2 | 1 | eqeq1i | |- ( ( F ` A ) = y <-> ( iota y A F y ) = y ) |
| 3 | iota1 | |- ( E! y A F y -> ( A F y <-> ( iota y A F y ) = y ) ) |
|
| 4 | 2 3 | bitr4id | |- ( E! y A F y -> ( ( F ` A ) = y <-> A F y ) ) |