Description: If x is not present in ph , then x is not free in ph . (Contributed by Mario Carneiro, 11-Aug-2016) Definition change. (Revised by Wolf Lammen, 12-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nfv | |- F/ x ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax5ea | |- ( E. x ph -> A. x ph ) |
|
2 | 1 | nfi | |- F/ x ph |