Description: Deduce that x is not free in ph from the definition. (Contributed by Wolf Lammen, 15-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfi.1 | |- ( E. x ph -> A. x ph ) | |
| Assertion | nfi | |- F/ x ph | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfi.1 | |- ( E. x ph -> A. x ph ) | |
| 2 | df-nf | |- ( F/ x ph <-> ( E. x ph -> A. x ph ) ) | |
| 3 | 1 2 | mpbir | |- F/ x ph |