Metamath Proof Explorer


Theorem bibi12d

Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses imbi12d.1
|- ( ph -> ( ps <-> ch ) )
imbi12d.2
|- ( ph -> ( th <-> ta ) )
Assertion bibi12d
|- ( ph -> ( ( ps <-> th ) <-> ( ch <-> ta ) ) )

Proof

Step Hyp Ref Expression
1 imbi12d.1
 |-  ( ph -> ( ps <-> ch ) )
2 imbi12d.2
 |-  ( ph -> ( th <-> ta ) )
3 1 bibi1d
 |-  ( ph -> ( ( ps <-> th ) <-> ( ch <-> th ) ) )
4 2 bibi2d
 |-  ( ph -> ( ( ch <-> th ) <-> ( ch <-> ta ) ) )
5 3 4 bitrd
 |-  ( ph -> ( ( ps <-> th ) <-> ( ch <-> ta ) ) )