Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 26-May-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | imbi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
imbi12d.2 | |- ( ph -> ( th <-> ta ) ) |
||
Assertion | bibi12d | |- ( ph -> ( ( ps <-> th ) <-> ( ch <-> ta ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | imbi12d.2 | |- ( ph -> ( th <-> ta ) ) |
|
3 | 1 | bibi1d | |- ( ph -> ( ( ps <-> th ) <-> ( ch <-> th ) ) ) |
4 | 2 | bibi2d | |- ( ph -> ( ( ch <-> th ) <-> ( ch <-> ta ) ) ) |
5 | 3 4 | bitrd | |- ( ph -> ( ( ps <-> th ) <-> ( ch <-> ta ) ) ) |