Metamath Proof Explorer


Theorem funbrfv

Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion funbrfv FunFAFBFA=B

Proof

Step Hyp Ref Expression
1 funrel FunFRelF
2 brrelex2 RelFAFBBV
3 1 2 sylan FunFAFBBV
4 breq2 y=BAFyAFB
5 4 anbi2d y=BFunFAFyFunFAFB
6 eqeq2 y=BFA=yFA=B
7 5 6 imbi12d y=BFunFAFyFA=yFunFAFBFA=B
8 funeu FunFAFy∃!yAFy
9 tz6.12-1 AFy∃!yAFyFA=y
10 8 9 sylan2 AFyFunFAFyFA=y
11 10 anabss7 FunFAFyFA=y
12 7 11 vtoclg BVFunFAFBFA=B
13 3 12 mpcom FunFAFBFA=B
14 13 ex FunFAFBFA=B