Metamath Proof Explorer


Theorem vtoclg

Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995) Avoid ax-12 . (Revised by SN, 20-Apr-2024)

Ref Expression
Hypotheses vtoclg.1 x = A φ ψ
vtoclg.2 φ
Assertion vtoclg A V ψ

Proof

Step Hyp Ref Expression
1 vtoclg.1 x = A φ ψ
2 vtoclg.2 φ
3 elisset A V x x = A
4 2 1 mpbii x = A ψ
5 4 exlimiv x x = A ψ
6 3 5 syl A V ψ