Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtoclg
Metamath Proof Explorer
Description: Implicit substitution of a class expression for a setvar variable.
(Contributed by NM , 17-Apr-1995) Avoid ax-12 . (Revised by SN , 20-Apr-2024)
Ref
Expression
Hypotheses
vtoclg.1
⊢ x = A → φ ↔ ψ
vtoclg.2
⊢ φ
Assertion
vtoclg
⊢ A ∈ V → ψ
Proof
Step
Hyp
Ref
Expression
1
vtoclg.1
⊢ x = A → φ ↔ ψ
2
vtoclg.2
⊢ φ
3
elisset
⊢ A ∈ V → ∃ x x = A
4
2 1
mpbii
⊢ x = A → ψ
5
4
exlimiv
⊢ ∃ x x = A → ψ
6
3 5
syl
⊢ A ∈ V → ψ