Metamath Proof Explorer


Theorem opabbidv

Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995)

Ref Expression
Hypothesis opabbidv.1 φψχ
Assertion opabbidv φxy|ψ=xy|χ

Proof

Step Hyp Ref Expression
1 opabbidv.1 φψχ
2 1 anbi2d φz=xyψz=xyχ
3 2 2exbidv φxyz=xyψxyz=xyχ
4 3 abbidv φz|xyz=xyψ=z|xyz=xyχ
5 df-opab xy|ψ=z|xyz=xyψ
6 df-opab xy|χ=z|xyz=xyχ
7 4 5 6 3eqtr4g φxy|ψ=xy|χ