Metamath Proof Explorer


Theorem opabbidv

Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995)

Ref Expression
Hypothesis opabbidv.1 φ ψ χ
Assertion opabbidv φ x y | ψ = x y | χ

Proof

Step Hyp Ref Expression
1 opabbidv.1 φ ψ χ
2 1 anbi2d φ z = x y ψ z = x y χ
3 2 2exbidv φ x y z = x y ψ x y z = x y χ
4 3 abbidv φ z | x y z = x y ψ = z | x y z = x y χ
5 df-opab x y | ψ = z | x y z = x y ψ
6 df-opab x y | χ = z | x y z = x y χ
7 4 5 6 3eqtr4g φ x y | ψ = x y | χ