Metamath Proof Explorer


Theorem 2exbidv

Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995)

Ref Expression
Hypothesis 2albidv.1 φ ψ χ
Assertion 2exbidv φ x y ψ x y χ

Proof

Step Hyp Ref Expression
1 2albidv.1 φ ψ χ
2 1 exbidv φ y ψ y χ
3 2 exbidv φ x y ψ x y χ