Metamath Proof Explorer


Theorem exbidv

Description: Formula-building rule for existential quantifier (deduction form). See also exbidh and exbid . (Contributed by NM, 26-May-1993)

Ref Expression
Hypothesis albidv.1 φψχ
Assertion exbidv φxψxχ

Proof

Step Hyp Ref Expression
1 albidv.1 φψχ
2 ax-5 φxφ
3 2 1 exbidh φxψxχ