Metamath Proof Explorer


Theorem exbidv

Description: Formula-building rule for existential quantifier (deduction form). See also exbidh and exbid . (Contributed by NM, 26-May-1993)

Ref Expression
Hypothesis albidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion exbidv ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 albidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ax-5 ( 𝜑 → ∀ 𝑥 𝜑 )
3 2 1 exbidh ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑥 𝜒 ) )