Metamath Proof Explorer


Theorem exbidv

Description: Formula-building rule for existential quantifier (deduction form). See also exbidh and exbid . (Contributed by NM, 26-May-1993)

Ref Expression
Hypothesis albidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion exbidv
|- ( ph -> ( E. x ps <-> E. x ch ) )

Proof

Step Hyp Ref Expression
1 albidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 ax-5
 |-  ( ph -> A. x ph )
3 2 1 exbidh
 |-  ( ph -> ( E. x ps <-> E. x ch ) )